Edge detection using compressed sensing

Wolfgang Stefan
Rice University, Houston, TX
SIAM IS10, April 14, 2010

work with A. Viswanathan, A. Gelb and R. Renaut at Arizona State University and
W. Yin at Rice University and W. Guo at Case Western Reserve University
Motivation for Edge detection
Motivation for Edge detection

Edges are an important feature of images for:

• Segmentation
Motivation for Edge detection

Edges are an important feature of images for:

- Segmentation
- Registration
Motivation for Edge detection

Edges are an important feature of images for:

- Segmentation
- Registration
- Restoration / Reconstruction
Motivation for Edge detection

Edges are an important feature of images for:

- Segmentation
- Registration
- Restoration / Reconstruction
- Target tracking
Example partial Fourier data
Example partial Fourier data
Example partial Fourier data
Example partial Fourier data

Fourier transform

85% zero

Inverse Fourier transform
Example partial Fourier data

Fourier transform

Inverse Fourier transform

Aliasing and Gibbs

85% zero
Example partial Fourier data

Fourier transform

Aliasing and Gibbs

Inverse Fourier transform

85% zero
Example partial Fourier data

Fourier transform

Inverse Fourier transform

Reconstruction using edges

Aliasing and Gibbs

85% zero
Outline

• Introduce data acquisition model
Outline

- Introduce data acquisition model
- Two approaches of detect edges from sampled data
• Introduce data acquisition model
• Two approaches of detect edges from sampled data
 1. Detect edges in a reconstruction
Introduce data acquisition model

Two approaches of detect edges from sampled data

1. Detect edges in a reconstruction

2. Detect edges directly from the given data without reconstruction
Forward Model

- Detect edges of f from samples g

$$g = f * h + n$$
Forward Model

- Detect edges of f from samples g

$$g = f * h + n$$

- g is the measurement vector
- $*$ is the convolution operator
- h is the point spread function
- n is random noise
Example I: Partial Fourier data

- For example: MRI, tomographic reconstruction
- The Fourier transform of h is an indicator function
Example II: Blurred data

- e.g. h is a Gaussian point spread function
Approach 1: Use reconstructions
Approach 1: Use reconstructions

- Two steps:
 1. Reconstruct signal
 2. Detect edges in reconstruction
Two steps:

1. Reconstruct signal
2. Detect edges in reconstruction

Advantage: Use classical reconstruction (e.g. Total Variation) and edge detection (e.g. Canny)
Approach 1: Use reconstructions

- Two steps:
 1. Reconstruct signal
 2. Detect edges in reconstruction

- **Advantage:** Use classical reconstruction (e.g. Total Variation) and edge detection (e.g. Canny)

- **Disadvantage:** Reconstruction may introduce artifacts
E.g. edges from TV reconstructions

Use total variation regularization

$$\min_{f} \{ \| f \ast h - g \|_2^2 + \lambda \| Lf \|_1^1 \}$$

L is a first order approximation of the first derivative
E.g. edges from TV reconstructions

Use total variation regularization

$$\min_f \{ \| f * h - g \|_2^2 + \lambda \| Lf \|_1 \}$$

L is a first order approximation of the first derivative
E.g. edges from TV reconstructions

Use total variation regularization

\[
\min_{f} \left\{ \| f \ast h - g \|_2^2 + \lambda \| Lf \|_1 \right\}
\]

\(L \) is a first order approximation of the first derivative.
E.g. edges from TV reconstructions

Use total variation regularization

$$\min_f \{ \| f \ast h - g \|_2^2 + \lambda \| L f \|_1 \}$$

L is a first order approximation of the first derivative

False jumps due to “stair case” effect
Fix: Use higher order TV solutions

$$\min_f \left\{ \| f \ast h - g \|_2^2 + \lambda \| L^m f \|_1 \right\}$$
Fix: Use higher order TV solutions

\[
\min_{f} \left\{ \| f \ast h - g \|_2^2 + \lambda \| L^m f \|_1 \right\}
\]

- \(f \) has \(m^{th} \) derivative which is \textit{sparse}
 - e.g. \textit{Total Variation (m=1)}: 1\text{st} derivative sparse
Fix: Use higher order TV solutions

$$\min_f \left\{ \| f \ast h - g \|_2^2 + \lambda \| L^m f \|_1 \right\}$$

- f has m^{th} derivative which is *sparse*

 e.g. *Total Variation* ($m=1$): 1st derivative sparse

- f is a *piecewise polynomial* of degree $m-1$

 e.g. *Total Variation* ($m=1$): piecewise constant
Fix: Use higher order TV solutions

\[
\min_f \left\{ \| f * h - g \|^2_2 + \lambda \| L^m f \|^1_1 \right\}
\]

- \(f \) has \(m \)th derivative which is \textit{sparse}
 - e.g. \textit{Total Variation} \((m=1)\): 1st derivative sparse

- \(f \) is a \textit{piecewise polynomial} of degree \(m-1 \)
 - e.g. \textit{Total Variation} \((m=1)\): piecewise constant

- \(L^m f \) is non-zero where polynomial segments meet (contact points)
 - e.g. \textit{Total Variation} between piecewise constant segments
Structure of higher order TV solutions

\[
\min_f \left\{ \| f \ast h - g \|_2^2 + \lambda \| L^m f \|_1 \right\}
\]

\[m = 1\]
Structure of higher order TV solutions

$$\min_{f} \left\{ \| f * h - g \|_2^2 + \lambda \| L^m f \|_1 \right\}$$

$m=1$

contact points, where constant segments meet
Structure of higher order TV solutions

$$\min_{f} \left\{ \| f \ast h - g \|_2^2 + \lambda \| L^m f \|_1 \right\}$$

$m=1$

contact points, where constant segments meet

$m=2$

contact points, where line segments meet
Structure of higher order TV solutions

$$\min_{f} \left\{ \| f * h - g \|_2^2 + \lambda \| L^m f \|_1 \right\}$$

- **m=1**: contact points, where constant segments meet
- **m=2**: contact points, where line segments meet
- **m=3**: contact points, where parabola segments meet
Structure of higher order TV solutions

\[
\min_f \left\{ \| f \ast h - g \|_2^2 + \lambda \| L^m f \|_1 \right\}
\]

- \(m=1\) contact points, where constant segments meet
- \(m=2\) contact points, where line segments meet
- \(m=3\) contact points, where parabola segments meet

\(m=2\) has no contact point at the jump location
Estimation of edges in a blurred signal

$m=1$

$m=3$
Estimation of edges in a blurred signal
Estimation of edges in a blurred signal

Algorithm

- Compute higher odd order TV restorations
- Find common contact points
Estimation of edges in a blurred signal

Algorithm

- Compute higher odd order TV restorations
- Find common contact points
50% Fourier coefficient example
Approach II: Directly use Fourier data
Approach II: Directly use Fourier data

• Assume $f(x)$ is piece-wise continuous and periodic
Approach II: Directly use Fourier data

- Assume $f(x)$ is piece-wise continuous and periodic
- Fourier coefficients are available
Approach II: Directly use Fourier data

- Assume $f(x)$ is piece-wise continuous and periodic
- Fourier coefficients are available
- The conjugated Fourier sum converges to the jump function

$$S_N^\sigma[f] = i \sum_{k=-N}^{N} \text{sgn}(k) \hat{f}_k e^{ikx}$$
Approach II: Directly use Fourier data

- Assume $f(x)$ is piece-wise continuous and periodic
- Fourier coefficients are available
- The **conjugated Fourier** sum converges to the jump function

$$S_N^\sigma[f] = i \sum_{k=-N}^{N} \sigma\left(\frac{|k|}{N}\right) \text{sgn}(k) \hat{f}_k e^{ikx}$$

- $\sigma(\xi)$ is a so called **concentration factor** and speeds up the convergence (e.g Gelb, Tadmor 1999)
Concentration factor example
Concentration factor example

Polynomial concentration factor of order 1

Polynomial concentration factor of order 2
Concentration factor example

- Concentrates around edges but has unwanted oscillations
Apply method to any periodic function with only one unit jump at the origin \Rightarrow oscillation pattern
Apply method to any periodic function with only one unit jump at the origin ⇒ oscillation pattern

Asymptotically for $N \rightarrow \infty$: Matching waveform
The Matching Wave Form

- Apply method to any periodic function with only one unit jump at the origin \Rightarrow oscillation pattern

- Asymptotically for $N \to \infty$: Matching waveform

$$W_N^\sigma(x) = \frac{1}{N} \sum_{k=1}^{N} \sigma \left(\frac{k}{N} \right) \frac{\cos kx}{k}$$
Removing Oscillations
Removing Oscillations

- **Idea:** *deconvolve* matching wave
Removing Oscillations

• **Idea**: deconvolve matching wave

• deconvolution is ill-posed problem ⇒ need regularization
Removing Oscillations

- **Idea:** deconvolve matching wave
- Deconvolution is ill-posed problem ⇒ need regularization
- Jumps are sparse ⇒ Use l_1 minimization
Removing oscillations cont.

\[y = \arg \min_u \| u \|_1 \quad \text{subject to} \quad \| W_N^\sigma * u - S_N^\sigma [f] \|_2^2 \leq \delta \]
Removing oscillations cont.

\[y = \arg \min_u \| u \|_1 \quad \text{subject to} \quad \| W^\sigma_N * u - S^\sigma_N[f] \|_2^2 \leq \delta \]

- **Matching wave form** depends on the concentration factor \(\sigma \) but not on the function \(f \)
Removing oscillations cont.

\[y = \arg \min_u \| u \|_1 \quad \text{subject to} \quad \| W_N^\sigma * u - S_N^\sigma[f] \|_2^2 \leq \delta \]

- **Matching wave form** depends on the concentration factor \(\sigma \) but not on the function \(f \)
- \(\delta > 0 \) in particular \(\delta \neq 0 \) because the **true wave form** depends on the function \(f \)
Removing oscillations cont.

\[y = \arg \min_u \| u \|_1 \quad \text{subject to} \quad \| W_N^\sigma * u - S_N^\sigma[f] \|_2^2 \leq \delta \]

- Matching wave form depends on the concentration factor \(\sigma \) but not on the function \(f \)
- \(\delta > 0 \) in particular \(\delta \neq 0 \) because the true wave form depends on the function \(f \)
- Solve with any classical \(l_1 \) solver
Example 1

- 50% Fourier samples with different concentration factors

\begin{align*}
\text{i=1: polynomial CF p=1} & & \text{i=2: polynomial p=2} & & \text{i=3: exponential}
\end{align*}
Example 2

- 50% Fourier samples with 15% noise
Edge detection summary
Edge detection summary

- Two approaches:
Edge detection summary

- Two approaches:

1. Detect edges in total variation reconstructions
Edge detection summary

- Two approaches:
 1. Detect edges in total variation reconstructions
 - Compute odd higher order total variation reconstructions
Two approaches:

1. Detect edges in total variation reconstructions

 - Compute odd higher order total variation reconstructions
 - Find common contact points between polynomial segments
Edge detection summary

- Two approaches:

 I. Detect edges in total variation reconstructions
 - Compute odd higher order total variation reconstructions
 - Find common contact points between polynomial segments

 II. Detect edges directly from partial Fourier data
Edge detection summary

Two approaches:

I. Detect edges in total variation reconstructions
 - Compute odd higher order total variation reconstructions
 - Find common contact points between polynomial segments

II. Detect edges directly from partial Fourier data
 - Compute conjugated Fourier sum
Edge detection summary

- Two approaches:
 - I. Detect edges in total variation reconstructions
 - Compute odd higher order total variation reconstructions
 - Find common contact points between polynomial segments
 - II. Detect edges directly from partial Fourier data
 - Compute conjugated Fourier sum
 - Remove oscillations by a regularized deconvolution in one step
Conclusions
Conclusions

- Two new methods to detect edges in
Conclusions

- Two new methods to detect edges in partial Fourier data
Conclusions

• Two new methods to detect edges in
• partial Fourier data
• data corrupted by blurring
Conclusions

- Two new methods to detect edges in
 - partial Fourier data
 - data corrupted by blurring
 - or both
Conclusions

- Two new methods to detect edges in
 - partial Fourier data
 - data corrupted by blurring
 - or both
- Combines edge detection and ideas from compressed sensing
Conclusions

- Two new methods to detect edges in
 - partial Fourier data
 - data corrupted by blurring
 - or both
- Combines edge detection and ideas from compressed sensing
- Can be extended to 2D
Conclusions

- Two new methods to detect edges in
 - partial Fourier data
 - data corrupted by blurring
 - or both

- Combines edge detection and ideas from compressed sensing

- Can be extended to 2D

- Other approaches also combine compressed sensing and edge detection: for example (Tadmor&Zou, 2006), (Guo&Yin, 2010)
Extra: Lambda

false counts

false positives
missed jumps

p=1
p=3
exp

false counts

false counts

false counts